Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Physiol B ; 194(1): 95-104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170253

RESUMO

Mus musculus enters a torpid state in response to caloric restriction in sub-thermoneutral ambient temperatures. This torpid state is characterized by an adaptive and controlled decrease in metabolic rate, heart rate, body temperature, and activity. Previous research has identified the paraventricular nucleus (PVN) within the hypothalamus, a region containing oxytocin neurons, as a location that is active during torpor onset. We hypothesized that oxytocin neurons within the PVN are part of this neural circuit and that activation of oxytocin neurons would deepen and lengthen torpor bouts. We report that activation of oxytocin neurons alone is not sufficient to induce a torpor-like state in the fed mouse, with no significant difference in body temperature or heart rate upon activation of oxytocin neurons. However, we found that activation of oxytocin neurons prior to the onset of daily torpor both deepens and lengthens the subsequent bout, with a 1.7 ± 0.4 °C lower body temperature and a 135 ± 32 min increase in length. We therefore conclude that oxytocin neurons are involved in the neural circuitry controlling daily torpor in the mouse.


Assuntos
Hibernação , Torpor , Camundongos , Animais , Jejum , Ocitocina , Torpor/fisiologia , Temperatura Corporal/fisiologia , Neurônios/fisiologia , Hibernação/fisiologia
2.
J Therm Biol ; 79: 149-154, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30612675

RESUMO

Mouse vivaria are typically maintained at an ambient temperature (Ta) of 20-26 °C which is comfortable for human researchers. However, as this Ta is well below the mouse thermoneutral zone (TNZ) of 30-32 °C, typical vivarium temperatures result in cold stress for mice. Recently, a cage has been developed that provides variable cage floor heating, allowing mice to behaviorally regulate body temperature through thermotaxis. A hand warmer provides supplemental heat, elevating cage floor surface temperature for 13 + hours up to 30 °C. This provides a heated surface for the entirety of the light phase. Here, we test the ability of these local heat sources to remove physiological signs of cold stress in mice housed at room temperature by analyzing heart rate (HR), activity, and body temperature in three experimental conditions: 23 °C, 23 °C + heated surface, or 30 °C. The location of C57Bl/6 J mice within the cage was recorded using an infrared camera. In the presence of supplemental heat at a Ta of 23 °C, mice resided atop of the area of the heated surface 85 ±â€¯3% of the 12-h light phase, as compared to 7 ±â€¯2% in the absence of supplemental heat. Further, addition of supplemental heat lowered light phase HR and activity to that seen at a Ta of 30 °C. These results indicate that provision of a local heat source is successful in reducing cold-induced tachycardia in mice housed at typical vivarium temperatures without increasing the ambient temperature of the entire laboratory and subjecting researchers to heat stress.


Assuntos
Temperatura Baixa/efeitos adversos , Calefação/instrumentação , Abrigo para Animais/normas , Estresse Fisiológico , Taquicardia/prevenção & controle , Animais , Calefação/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Taquicardia/etiologia , Taquicardia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...